Antolini, Macrotrigiano, Menabue \& Pellacani, 1983; Solans, Ruíz-Ramírez, Martínez, Gasque \& Moreno-Esparza, 1992) though longer $\mathrm{Cu}-\mathrm{N}(a r)$ distances of up to 2.145 (2) $\AA$ have been reported (Nardin, Randaccio, Bonomo \& Rizzarelli, 1980).

The $\mathrm{Cu}-\mathrm{O}$ (1) (carboxylate) and $\mathrm{Cu}-\mathrm{N}$ (aminoacidato) bond lengths in (I) and (II) are slightly longer than those observed in related complexes (Solans, Ruíz-Ramírez, . Martínez, Gasque \& Briansó, 1988; Antolini, Marcotrigiano, Menabue \& Pellacani, 1983).
The $\mathrm{Cu}-\mathrm{O}(W 1)$ (aqua) apical bond length alters from 2.209 (11) in (I) to 2.458 (6) $\AA$ in (II). Values of 2.24 (1) and 2.368 (5) $\AA$ are reported for aqua( $1,10-$ phenanthroline)(L-phenylalaninato)copper(II) nitrate monohydrate (Solans, Ruíz-Ramírez, Martínez, Gasque \& Briansó, 1988) and aqua(aspartato)( $2,2^{\prime}$-bipyridine)copper(II) trihydrate (Antolini, Marcotrigiano, Menabue \& Pellacani, 1983), respectively.

The $\mathrm{N}(5)-\mathrm{Cu}-\mathrm{O}(1)$ bond angle of 83.5 (4) ${ }^{\circ}$ in (I) and the $\mathrm{N}(4)-\mathrm{Cu}-\mathrm{O}(1)$ angle of 86.1 (4) ${ }^{\circ}$ in (II) correlate with the mean metal-ligand bond lengths in (I) and (II) ( 2.055 and $2.014 \AA$, respectively). This correlation is based on the constancy of the $\mathrm{O}(1) \cdots \mathrm{N}(5)$ and $\mathrm{O}(1) \cdots \mathrm{N}(4)$ distances (average $2.66 \AA$ ). The mean donor-metal distance increases linearly from 2.0 to $2.5 \AA$ as the interionic angle decreases from 84 to $64^{\circ}$ (Freeman, 1967).

Three of us (LRR, AM and RME) thank the Facultad de Química UNAM-Conacyt (Mexico) and CSIC (Spain) for their financial support.

## References

Antolini, L., Marcotrigiano, G., Menabue, L. \& Pellacani, G. C. (1983). Inorg. Chem. 22, 141-145.

Aoki, K. \& Yamasaky, H. (1980). J. Am. Chem. Soc. 102, 6878-6883.
Beurskens, P. T., Bosman, W. P., Doesburg, H. M., Gould, R. O., Van den Hark, Th. E. M., Prick, P. A. J., Noordik, J. H., Beurskens, G. \& Parthasarathi, V. (1981). DIRDIF. Tech. Rep. 1981/2. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
Freeman, H. C. (1967). Adv. Protein Chem. 22, 257-263.
Main, P., Fiske, S. L., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1984). MULTAN. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Nardin, G., Randaccio, L., Bonomo, R. \& Rizzarelli, E. (1980). J. Chem. Soc. Dalton Trans. pp. 369-375.

Ruíz-Ramírez, L., Martínez, A. \& Gasque, L. (1992). Unpublished results.
Sheldrick, G. M. (1976). SHELX. Program for crystal structure determination. Univ. of Cambridge, England.
Solans, X., Aguiló, M., Gleizest, A., Faus, J., Julve, M. \& Verdaguer, M. (1990). Inorg. Chem. 29, 775-784.
Solans, X., Ruíz-Ramírez, L., Gasque, L. \& Briansó, J. L. (1987). Acta Cryst. C43, 428-430.

Solans, X., Ruíz-Ramírez, L., Martínez, A., Gasque, L. \& Briansó, J. L. (1988). Acta Cryst. C44, 628-631.
Solans, X., Ruíz-Ramírez, L., Martínez, A., Gasque, L. \& Moreno-Esparza, R. (1992). Acta Cryst. C48, 1785-1788.

# Structural Characterization of $\mathbf{W}^{\mathbf{4}} \mathbf{W C l}_{\mathbf{4}}\left(\mathbf{P M e P h}_{\mathbf{2}}\right)_{\mathbf{4}}$ 

By F. A. Cotton,* Judith L. Eglin $\dagger$ and Chris A. James $\ddagger$<br>Department of Chemistry and The Laboratory for Molecular Structure and Bonding, Texas A\&M University, College Station, Texas 77843, USA

(Received 29 June 1992; accepted 18 January 1993)


#### Abstract

Bis[dichlorobis(methyldiphenylphosphine$P)$ tungsten $]\left(W^{4} W\right)$ benzene solvate, $\left[\mathrm{W}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{13^{-}}\right.\right.$ $\left.\left.\mathrm{H}_{13} \mathrm{P}\right)_{4}\right], \quad M_{r}=1388.64$, orthorhombic, Pbca, $a=$ 12.2783 (8), $b=21.5387$ (6), $c=41.9626$ (2) $\AA, V=$ 11097 (8) $\AA^{3}, Z=8, D_{x}=1.664 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71073 \AA, \mu=45.827 \mathrm{~cm}^{-1}, F(000)=5456, T=$ $173 \mathrm{~K}, R=0.0435$ for 4359 unique observed reflec-

^[ * Author to whom correspondence should be addressed. $\dagger$ Present address: Mississippi State University, Mississippi State, MS 39762, USA. $\ddagger$ Present address: Los Alamos National Laboratory, INC-4 Los Alamos, NM 87545, USA. ]


tions. The molecule is dinuclear with a $\mathrm{W}^{4}-\mathrm{W}$ distance of 2.2728 (7) $\AA$. The $\mathrm{W}-\mathrm{Cl}$ distances range from 2.373 (4) to 2.398 (4) $\AA$ and the W-P distances from 2.529 (4) to 2.548 (4) $\AA$. The angles between the trans Cl ligands are 139.9 (1) and 137.3 (1) for $\mathrm{Cl}(1)-\mathrm{W}(1)-\mathrm{Cl}(2)$ and $\mathrm{Cl}(3)-\mathrm{W}(2)-\mathrm{Cl}(4)$, respectively. The angles between the trans phosphine ligands are 158.2 (1) and $156.0(1)^{\circ}$ for $\mathrm{P}(1)-\mathrm{W}(1)-$ $\mathrm{P}(2)$ and $\mathrm{P}(3)-\mathrm{W}(2)-\mathrm{P}(4)$, respectively.

Introduction. While quadruply bonded dimolybdenum compounds have been extensively studied, the
analogous ditungsten chemistry is more limited (Cotton \& Walton, 1993). Owing to the presence of bulky, labile phosphine ligands, the compound $\mathrm{W} 4{ }^{4} \mathrm{WCl}_{4}\left(\mathrm{PMePh}_{2}\right)_{4}$ is an excellent starting material in the synthesis of other $\mathrm{W}_{2} \mathrm{Cl}_{4} L_{4}$ and $\mathrm{W}_{2} \mathrm{Cl}_{4}(L-L)_{2}$ complexes, where $L=$ monodentate and $L-L=$ bidentate phosphine ligands (Schrock, Sturgeoff \& Sharp, 1983). During the investigation of quadruply bonded ditungsten compounds, crystals of the title complex were obtained. Since there are only two other reported crystal structures of $\mathrm{W}_{2} \mathrm{Cl}_{4} L_{4}$ complexes, those of $\mathrm{W}^{4}-\mathrm{WCl}_{4}\left(\mathrm{PMe}_{3}\right)_{4}$ and $\mathrm{W}^{4}-\mathrm{WCl}_{4}\left(\mathrm{PBu}_{3}\right)_{4}$ (Cotton, Extine, Felthouse, Kolthammer \& Lay, 1983; Cotton, Jennings, Price \& Vidyasagar, 1990), the crystal structure of $\mathrm{W}^{4}-\mathrm{WCl}_{4}\left(\mathrm{PMePh}_{2}\right)_{4}$ was investigated and is reported here.

Experimental. The compound was prepared essentially by the method described in the literature except that $\mathrm{NaBEt}_{3} \mathrm{H}$ instead of $\mathrm{Na} / \mathrm{Hg}$ was used as the reducing agent (Schrock, Sturgeoff \& Sharp, 1983). X-ray-quality crystals were obtained by layering a THF solution of $\mathrm{W}^{4}-\mathrm{WCl}_{4}\left(\mathrm{PMePh}_{2}\right)_{4}$ with a benzene/hexanes mixture ( $2: 8$ ) in glass tubes sealed under argon. The quality of the crystals was confirmed by polarized-light microscopy. A green irregularly shaped crystal, $0.20 \times 0.20 \times 0.10 \mathrm{~mm}$, was mounted on a quartz fiber with silicon grease. Unitcell dimensions were determined from least-squares analysis of 25 reflections with $16.68<2 \theta<29.24^{\circ}$. Laue class and the unit-cell dimensions were confirmed with axial photographs. Intensity data were collected to maximum $(\sin \theta) / \lambda=0.583 \AA^{-1}(h=0 \rightarrow$ $13, k=0 \rightarrow 23, l=0 \rightarrow 45$ ) using the $2 \theta-\omega$ technique on a CAD-4S diffractometer with graphite-monochromated Mo $K \alpha$ radiation. Three standard reflections $(8,0,12, \overline{3} \overline{9}, \overline{6}, 1,16)$ measured every hour decreased $0.3 \%$ over 159.5 h of data collection and no decay correction was made. Data were corrected for Lorentz and polarization effects, as well as for absorption based on $\psi$ scans using the empirical method of North, Phillips \& Mathews (1968); $T_{\min }=$ $0.8010, T_{\max }=0.9982$. 7992 unique reflections were measured and 4359 with $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)$ were considered observed.
Positions of $\mathrm{W}, \mathrm{Cl}$ and P atoms were determined by direct methods using SHELXS86 (Sheldrick, 1986) and subjected to alternating full-matrix leastsquares refinements and difference Fourier maps employing the Enraf-Nonius (1979) Structure Determination Package to reveal the rest of the molecule. $w R=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w\left|F_{o}\right|^{2}\right]^{1 / 2}$ was minimized, where $w=1 / \sigma^{2}\left(\left|F_{o}\right|\right)$. All non-H atoms were refined anisotropically. The phenyl groups were refined as rigid bodies (Sheldrick, 1976), geometrically idealized as hexagons with $\mathbf{C}-\mathbf{C}=1.395$ and $\mathbf{C}-\mathrm{H}=0.98 \AA$.

However, each $C$ atom was permitted to have a freely varying anisotropic displacement tensor. All phenyl H atoms were required to have the same isotropic thermal parameter. The methyl C atoms in the coordinated $\mathrm{PPh}_{2} \mathrm{Me}$ ligand were assigned H atoms at idealized positions. All H atoms were then refined using a riding model and with the same thermal parameter. A total of 321 variables were used with the final $R=0.0435, w R=0.0436$ and $S=$ 1.494. At convergence, $(\Delta / \sigma)_{\max }=0.001 ;(\Delta \rho)_{\max }=$ 1.309 and $(\Delta \rho)_{\min }=0.565 \mathrm{e}^{-3}$ on the final difference Fourier map. Atomic scattering factors, including anomalous-dispersion corrections, were taken from International Tables for $X$-ray Crystallography (1974, Vol IV).

Discussion. The positional and equivalent isotropic displacement parameters are given in Table 1. The structure is depicted in Fig. 1 where the atomnumbering scheme is also defined. Selected important interatomic bond distances and angles are given in Table 2.*

The presence of the bulky $\mathrm{PPh}_{2} \mathrm{Me}$ phosphine ligands makes ${ }^{4}-4 \mathrm{WCl}_{4}\left(\mathrm{PMePh}_{2}\right)_{4}$ an excellent starting material in the prepation of other $W^{4}-W$ complexes with monodentate and bidentate phosphine ligands via substitution reactions. While there are several known compounds with bidentate phosphine ligands, the number of $W 4-W$ complexes containing monodentate phosphines that have been structurally characterized is limited (Cotton \& Walton, 1993). W $4-W_{4}\left(\mathrm{PMe}_{3}\right)_{4}$, reported in 1981, and $\mathrm{W} 4-4 \mathrm{WCl}_{4}\left(\mathrm{PBu}_{3}\right)_{4}$ are the only other structurally characterized complexes of the type $\mathrm{W}_{2} \mathrm{Cl}_{4} L_{4}$ (Cotton, Extine, Felthouse, Kolthammer \& Lay, 1983; Cotton, Jennings, Price \& Vidyasagar, 1990).

The $W=4$ distance in $W 4-{ }^{4} \mathrm{WCl}_{4}\left(\mathrm{PMePh}_{2}\right)_{4}$ is 2.2728 (7) $\AA$, slightly longer than the distances of 2.262 (1) and 2.267 (1) $\AA$ observed in $\mathrm{W}-\frac{4}{}-\mathrm{WCl}_{4}\left(\mathrm{PMe}_{3}\right)_{4}$ and $\mathrm{W}^{4}-\mathrm{WCl}_{4}\left(\mathrm{PBu}_{3}\right)_{4}$, respectively. The average $\mathrm{W}-\mathrm{Cl}$ bond distances for all of these compounds are in the range $2.39-2.40 \AA$. The $\mathrm{W}-\mathrm{P}$ bond distance for $\mathrm{W}^{4}-\mathrm{WCl}_{4}\left(\mathrm{PMePh}_{2}\right)_{4}$ is $2.54 \AA$. This distance is only $0.03 \AA$ longer than in $\mathrm{W}-4-\mathrm{WCl}_{4}\left(\mathrm{PMe}_{3}\right)_{4}$ and $0.01 \AA$ longer than in $\mathrm{W} 4-\mathrm{WCl}_{4}\left(\mathrm{PBu}_{3}\right)_{4}$. For the complexes $\mathrm{W}^{4}-\mathrm{WCl}_{4}-$ $\left(\mathrm{PMePh}_{2}\right)_{4}, \quad \mathrm{~W}-4-\mathrm{WCl}_{4}\left(\mathrm{PMe}_{3}\right)_{4}$ and $\mathrm{W}^{4}-\mathrm{WCl}_{4}-$ $\left(\mathrm{PBu}_{3}\right)_{4}$, the average $\mathrm{W}-\mathrm{W}-\mathrm{Cl}$ angles are 110.7, 111.6 and $108.8^{\circ}$ and the $\mathrm{W}-\mathrm{W}-\mathrm{P}$ angles are 101.3, 101.1 and $103.0^{\circ}$, respectively. Only small changes in

[^1]Table 1. Positional and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for $\mathrm{W}-4 \mathrm{WCl}_{4}\left(\mathrm{PMePh}_{2}\right)_{4}$

the structures of $\mathrm{W}_{2} \mathrm{Cl}_{4} L_{4}$ complexes are observed when changing from a small monodentate phosphine such as $\mathrm{PMe}_{3}$ to bulkier ones, such as $\mathrm{PPh}_{2} \mathrm{Me}$ or $\mathrm{PBu}_{3}$, as expected from the crystal structures of $\mathrm{Mo}_{2} \mathrm{Cl}_{4} L_{4}$ complexes (Cotton, Extine, Felthouse, Kolthammer \& Lay, 1981; Cotton, Daniels, Powell, Kahaian, Smith \& Vogel, 1988).

Table 2. Selected interatomic bond distances $(\AA)$ and angles $\left({ }^{\circ}\right)$ for $\mathrm{W}^{-4} \mathrm{WCl}_{4}\left(\mathrm{PMePh}_{2}\right)_{4}$

| $\mathrm{W}(1)-\mathrm{W}(2)$ | $2.2728(7)$ | $\mathrm{P}(1)-\mathrm{C}(131)$ | $1.828(9)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{W}(1)-\mathrm{Cl}(1)$ | $2.394(4)$ | $\mathrm{P}(2)-\mathrm{C}(211)$ | $1.818(9)$ |
| $\mathrm{W}(1)-\mathrm{Cl}(2)$ | $2.384(4)$ | $\mathrm{P}(2)-\mathrm{C}(221)$ | $1.81(1)$ |
| $\mathrm{W}(1)-\mathrm{P}(1)$ | $2.534(4)$ | $\mathrm{P}(2)-\mathrm{C}(231)$ | $1.846(9)$ |
| $\mathrm{W}(1)-\mathrm{P}(2)$ | $2.548(4)$ | $\mathrm{P}(3)-\mathrm{C}(311)$ | $1.85(1)$ |
| $\mathrm{W}(2)-\mathrm{Cl}(3)$ | $2.398(4)$ | $\mathrm{P}(3)-\mathrm{C}(321)$ | $1.83(1)$ |
| $\mathrm{W}(2)-\mathrm{Cl}(4)$ | $2.373(4)$ | $\mathrm{P}(3)-\mathrm{C}(331)$ | $1.84(2)$ |
| $\mathrm{W}(2)-\mathrm{P}(3)$ | $2.548(4)$ | $\mathrm{P}(4)-\mathrm{C}(411)$ | $1.84(1)$ |
| $\mathrm{W}(2)-\mathrm{P}(4)$ | $2.529(4)$ | $\mathrm{P}(4)-\mathrm{C}(421)$ | $1.82(2)$ |
| $\mathrm{P}(1)-\mathrm{C}(111)$ | $1.82(2)$ | $\mathrm{P}(4)-\mathrm{C}(431)$ | $1.83(1)$ |
| $\mathrm{P}(1)-\mathrm{C}(121)$ | $1.841(9)$ |  |  |


| $\mathrm{W}(2)-\mathrm{W}(1)-\mathrm{Cl}(1)$ | $110.96(9)$ | $\mathrm{Cl}(3)-\mathrm{W}(2)-\mathrm{P}(4)$ | $84.2(1)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{W}(2)-\mathrm{W}(1)-\mathrm{Cl}(2)$ | $109.19(9)$ | $\mathrm{Cl}(4)-\mathrm{W}(2)-\mathrm{P}(3)$ | $82.0(1)$ |
| $\mathrm{W}(2)-\mathrm{W}(1)-\mathrm{P}(1)$ | $100.40(9)$ | $\mathrm{Cl}(4)-\mathrm{W}(2)-\mathrm{P}(4)$ | $85.1(1)$ |
| $\mathrm{W}(2)-\mathrm{W}(1)-\mathrm{P}(2)$ | $101.31(9)$ | $\mathrm{P}(3)-\mathrm{W}(2)-\mathrm{P}(4)$ | $156.0(1)$ |
| $\mathrm{Cl}(1)-\mathrm{W}(1)-\mathrm{Cl}(2)$ | $139.9(1)$ | $\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(121)$ | $102.7(6)$ |
| $\mathrm{Cl}(1)-\mathrm{W}(1)-\mathrm{P}(1)$ | $88.8(1)$ | $\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(131)$ | $105.3(6)$ |
| $\mathrm{Cl}(1)-\mathrm{W}(1)-\mathrm{P}(2)$ | $82.2(1)$ | $\mathrm{C}(121)-\mathrm{P}(1)-\mathrm{C}(131)$ | $99.3(4)$ |
| $\mathrm{Cl}(2)-\mathrm{W}(1)-\mathrm{P}(1)$ | $84.3(1)$ | $\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(221)$ | $104.9(5)$ |
| $\mathrm{Cl}(2)-\mathrm{W}(1)-\mathrm{P}(2)$ | $89.9(1)$ | $\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(231)$ | $100.2(5)$ |
| $\mathrm{P}(1)-\mathrm{W}(1)-\mathrm{P}(2)$ | $158.2(1)$ | $\mathrm{C}(221)-\mathrm{P}(2)-\mathrm{C}(231)$ | $102.5(5)$ |
| $\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{Cl}(3)$ | $111.80(9)$ | $\mathrm{C}(311)-\mathrm{P}(3)-\mathrm{C}(321)$ | $102.2(5)$ |
| $\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{Cl}(4)$ | $110.85(8)$ | $\mathrm{C}(311)-\mathrm{P}(3)-\mathrm{C}(331)$ | $103.0(6)$ |
| $\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{P}(3)$ | $101.70(9)$ | $\mathrm{C}(321)-\mathrm{P}(3)-\mathrm{C}(331)$ | $105.2(6)$ |
| $\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{P}(4)$ | $101.75(9)$ | $\mathrm{C}(411)-\mathrm{P}(4)-\mathrm{C}(421)$ | $102.3(6)$ |
| $\mathrm{Cl}(3)-\mathrm{W}(2)-\mathrm{Cl}(4)$ | $137.3(1)$ | $\mathrm{C}(411)-\mathrm{P}(4)-\mathrm{C}(431)$ | $100.1(4)$ |
| $\mathrm{Cl}(3)-\mathrm{W}(2)-\mathrm{P}(3)$ | $91.7(1)$ | $\mathrm{C}(421)-\mathrm{P}(4)-\mathrm{C}(431)$ | $105.0(6)$ |



Fig. 1. An ORTEP (Johnson, 1965) drawing of the $\mathrm{W}-4 \mathrm{WCl}_{4}\left(\mathrm{PMePh}_{2}\right)_{4}$ molecule. W, P and Cl atoms are represented by displacement ellipsoids at the $50 \%$ level. The C atoms are drawn with arbitrary radii and the H atoms are omitted for clarity.

We are grateful to the National Science Foundation for Support.

## References

Cotton, F. A., Daniels, L. M., Powell, G. L., Kahaian, A. J., Smith, T. J. \& Vogel, E. F. (1988). Inorg. Chim. Acta, 144, 109-121.
Cotton F. A., Extine, M. W., Felthouse, T. R., Kolthammer, B. W. \& Lay, D. G. (1983). J. Am. Chem. Soc. 103, 40404045.

Cotton, F. A., Jennings, J. G., Price, A. C. \& Vidyasagar, K. (1990). Inorg. Chem. 29, 4138-4143.

Cotton, F. A. \& Walton, R. A. (1993). Multiple Bonds Between Metal Atoms, 2nd ed. Oxford Univ. Press.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Schrock, R. R., Sturgeoff, L. G. \& Sharp, P. R. (1983). Inorg. Chem. 22, 2801-2806.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal stuctures. Univ. of Göttingen, Germany.

Acta Cryst. (1993). C49, 896-898

# Structure of 2-Methyl-5,6,7-triphenyl-6,7-dihydropyrazolo[2,3-a]pyrimidine 

By S. V. Lindeman and Yu. T. Struchkov<br>X-ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Academy of Sciences of Russia, Vavilov St. 28, 117813, Moscow, Russia<br>and O. V. Shishkin, S. M. Desenko, V. V. Lipson and V. D. Orlov<br>Department of Organic Chemistry, Kharkov University, Dzerzgynsky Sq. 4, 310077, Kharkov, Ukraine

(Received 3 July 1991; accepted 23 September 1992)


#### Abstract

C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3}, M_{r}=363.46\), monoclinic, $P 2_{1} / n$, $a=9.245$ (2),$\quad b=23.502$ (5),$\quad c=9.340$ (2) $\AA, \quad \beta=$ 103.50 (3) $, \quad V=1973.3(2) \AA^{3}, \quad Z=4, \quad D_{x}=$ 1.220 (2) $\mathrm{g} \mathrm{cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $0.068 \mathrm{~cm}^{-1}, F(000)=768, T=292 \mathrm{~K}, R=0.091$ for 1442 unique observed reflections. The dihydropyrimidine ring adopts a distorted sofa conformation. The aryl substituents on the saturated C atoms have an axial orientation.


Introduction. Dihydro derivatives of pyrazolo-[1,5-a]pyrimidine have high physiological activity, the most important being cardiovascular activity (Tsuda, Mishina, Obata, Inui \& Nakamura, 1986). Though chemical and physiological characteristics of these componds are directly defined by the conformation of their molecules, relevant data on the spatial structure of the dihydropyrazolo[2,3-a]pyrimidines are not available. The present paper is a continuation of our investigation of the molecular and crystal structures of dihydropyrazolopyrimidines containing a bridgehead nitrogen (Orlov, Desenko, Potekhin \& Struchkov, 1988) and is devoted to an X-ray diffraction study of 2-methyl-5,6,7-triphenyl-6,7-dihydropyrazolo[2,3-a]pyrimidine (I).

Experimental. The title compound was prepared by the method described by Orlov, Quiroga, Kolos \& Desenko, (1988). Crystals of (I) as pale-yellow plates of approximate dimensions $0.10 \times 0.15 \times 0.20 \mathrm{~mm}$,
suitable for an X-ray study, were grown from a 2-propanol solution by slow evaporation of the solvent. A Siemens P3/PC diffractometer with graphitemonochromated Mo $K \alpha$ radiation was used. The unit-cell parameters were determined by leastsquares fit of setting angles of 9 automatically centred reflections ( $24<\theta<26^{\circ}$ ). The $\theta / 2 \theta$ scan technique with a variable scan speed ( 2.0 to $30.0^{\circ} \mathrm{min}^{-1}$ ) was used. Two check reflections were monitored after every 50 measurements and they showed no systematic variation in intensity. 2775 reflections up to $2 \theta=56.0^{\circ}$ were measured including the check and equivalent reflections, with $0<h<12$, $0<k<26,-11<l<11$. Of 2640 unique reflections $\left(R_{\text {int }}=0.023\right), 2467$ reflections had $I>2 \sigma(I)$. Only Lp corrections were applied.
The structure was solved by direct methods using the SHELXTL-Plus (Siemens, 1990) programs. After non-H atoms were refined anisotropically, positions of all H atoms were calculated but were not refined further. The function minimized was $\sum w\left(F_{o}-F_{c}\right)^{2}$, where $w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.0003 F_{o}{ }^{2}\right]$. Four strong reflections with $\left(F_{o}-F_{c}\right) / \sigma>4.0$ were excluded from the final refinement cycles, giving 1442 reflections with $F_{o}$ $>5 \sigma(F)$. The final cycle of the full-matrix leastsquares refinement gave $R=0.091, w R=0.087$ and $S=2.56\left[S=(n-m)^{-1} \sum_{i}\left(F_{o}^{i}-F_{c}^{i}\right)^{2} / \sigma^{2}, n=1442, m\right.$ $=253]$. The high $R$ value is due to the low quality of the crystal. For all parameters the final shift $/ \sigma$ ratio was smaller than 0.061 , the highest peak in the final


[^1]:    * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and complete bond distances and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55861 ( 41 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HH 1033]

